AI approach

Legacy – The Era of Scale-Up

Traditional AI approach showing its limitations:

  • Simple Data: Starting with basic data
  • Simple Data & Logic: Combining data with logic
  • Better Data & Logic: Improving data and logic
  • Complex Data & Logic: Advancing to complex data and logic
  • Near The Limitation: Eventually hitting a fundamental ceiling

This approach gradually increases complexity, but no matter how much it improves, it inevitably runs into fundamental scalability limitations.

AI Works – The Era of Scale-Out

Modern AI transcending the limitations of the legacy approach through a new paradigm:

  • The left side shows the limitations of the old approach
  • The lightbulb icon in the middle represents a paradigm shift (Breakthrough)
  • The large purple box on the right demonstrates a completely different approach:
    • Massive parallel processing of countless “01/10” units (neural network neurons)
    • Horizontal scaling (Scale-Out) instead of sequential complexity increase
    • Fundamentally overcoming the legacy limitations

Key Message

No matter how much you improve the legacy approach, there’s a ceiling. AI breaks through that ceiling with a completely different architecture.


Summary

  • Legacy AI hits fundamental limits by sequentially increasing complexity (Scale-Up)
  • Modern AI uses massive parallel processing architecture to transcend these limitations (Scale-Out)
  • This represents a paradigm shift from incremental improvement to architectural revolution

#AI #MachineLearning #DeepLearning #NeuralNetworks #ScaleOut #Parallelization #AIRevolution #Paradigmshift #LegacyVsModern #AIArchitecture #TechEvolution #ArtificialIntelligence #ScalableAI #DistributedComputing #AIBreakthrough

Multi-Head Latent Attention – Changes

Multi-Head Latent Attention (MLA) Interpretation

This image is a technical diagram explaining the structure of Multi-Head Latent Attention (MLA).

🎯 Core Concept

MLA is a mechanism that improves the memory efficiency of traditional Multi-Head Attention.

Traditional Approach (Before) vs MLA

Traditional Approach:

  • Stores K, V vectors of all past tokens
  • Memory usage increases linearly with sequence length

MLA:

  • Summarizes past information with a fixed-size Latent vector (c^KV)
  • Maintains constant memory usage regardless of sequence length

πŸ“Š Architecture Explanation

1. Input Processing

  • Starts from Input Hidden State (h_t)

2. Latent Vector Generation

  • Latent c_t^Q: For Query of current token (compressed representation)
  • Latent c_t^KV: For Key-Value (cached and reused)

3. Query, Key, Value Generation

  • Query (q): Generated from current token (h_t)
  • Key-Value: Generated from Latent c_t^KV
    • Creates Compressed (C) and Recent (R) versions from c_t^KV
    • Concatenates both for use

4. Multi-Head Attention Execution

  • Performs attention computation with generated Q, K, V
  • Uses BF16 (Mixed Precision)

βœ… Key Advantages

  1. Memory Efficiency: Compresses past information into fixed-size vectors
  2. Faster Inference: Reuses cached Latent vectors
  3. Information Preservation: Maintains performance by combining compressed and recent information
  4. Mixed Precision Support: Utilizes FP8, FP32, BF16

πŸ”‘ Key Differences

  • v_t^R from Latent c_t^KV is not used (purple box on the right side of diagram)
  • Value of current token is directly generated from h_t
  • This enables efficient combination of compressed past information and current information

This architecture is an innovative approach to solve the KV cache memory problem during LLM inference.


Summary

MLA replaces the linearly growing KV cache with fixed-size latent vectors, dramatically reducing memory consumption during inference. It combines compressed past information with current token data through an efficient attention mechanism. This innovation enables faster and more memory-efficient LLM inference while maintaining model performance.

#MultiHeadLatentAttention #MLA #TransformerOptimization #LLMInference #KVCache #MemoryEfficiency #AttentionMechanism #DeepLearning #NeuralNetworks #AIArchitecture #ModelCompression #EfficientAI #MachineLearning #NLP #LargeLanguageModels

With Claude

Programming … AI

This image contrasts traditional programming, where developers must explicitly code rules and logic (shown with a flowchart and a thoughtful programmer), with AI, where neural networks automatically learn patterns from large amounts of data (depicted with a network diagram and a smiling programmer). It illustrates the paradigm shift from manually defining rules to machines learning patterns autonomously from data.

#AI #MachineLearning #Programming #ArtificialIntelligence #AIvsTraditionalProgramming

Cooling with AI works

AI Workload Cooling Systems: Bidirectional Physical-Software Optimization

This image summarizes four cutting-edge research studies demonstrating the bidirectional optimization relationship between AI LLMs and cooling systems. It proves that physical cooling infrastructure and software workloads are deeply interconnected.

πŸ”„ Core Concept of Bidirectional Optimization

Direction 1: Physical Cooling β†’ AI Performance Impact

  • Cooling methods directly affect LLM/VLM throughput and stability

Direction 2: AI Software β†’ Cooling Control

  • LLMs themselves act as intelligent controllers for cooling systems

πŸ“Š Research Analysis

1. Physical Cooling Impact on AI Performance (2025 arXiv)

[Cooling HW β†’ AI SW Performance]

  • Experiment: Liquid vs Air cooling comparison on H100 nodes
  • Physical Differences:
    • GPU Temperature: Liquid 41-50Β°C vs Air 54-72Β°C (up to 22Β°C difference)
    • GPU Power Consumption: 148-173W reduction
    • Node Power: ~1kW savings
  • Software Performance Impact:
    • Throughput: 54 vs 46 TFLOPs/GPU (+17% improvement)
    • Sustained and predictable performance through reduced throttling
    • Improved performance/watt (perf/W) ratio

β†’ Physical cooling improvements directly enhance AI workload real-time processing capabilities

2. AI Controls Cooling Systems (2025 arXiv)

[AI SW β†’ Cooling HW Control]

  • Method: Offline Reinforcement Learning (RL) for automated data center cooling control
  • Results: 14-21% cooling energy reduction in 2000-hour real deployment
  • Bidirectional Effects:
    • AI algorithms optimally control physical cooling equipment (CRAC, pumps, etc.)
    • Saved energy β†’ enables more LLM job execution
    • Secured more power headroom for AI computation expansion

β†’ AI software intelligently controls physical cooling to improve overall system efficiency

3. LLM as Cooling Controller (2025 OpenReview)

[AI SW ↔ Cooling HW Interaction]

  • Innovative Approach: Using LLMs as interpretable controllers for liquid cooling systems
  • Simulation Results:
    • Temperature Stability: +10-18% improvement vs RL
    • Energy Efficiency: +12-14% improvement
  • Bidirectional Interaction Significance:
    • LLMs interpret real-time physical sensor data (temperature, flow rate, etc.)
    • Multi-objective trade-off optimization between cooling requirements and energy saving
    • Interpretability: LLM decision-making process is human-understandable
    • Result: Reduced throttling/interruptions β†’ improved AI workload stability

β†’ Complete closed-loop where AI controls physical systems, and results feedback to AI performance

4. Physical Cooling Innovation Enables AI Training (E-Energy’25 PolyU)

[Cooling HW β†’ AI SW Training Stability]

  • Method: Immersion cooling applied to LLM training
  • Physical Benefits:
    • Dramatically reduced fan/CRAC overhead
    • Lower PUE (Power Usage Effectiveness) achieved
    • Uniform and stable heat removal
  • Impact on AI Training:
    • Enables stable long-duration training (eliminates thermal spikes)
    • Quantitative power-delay trade-off optimization per workload
    • Continuous training environment without interruptions

β†’ Advanced physical cooling technology secures feasibility of large-scale LLM training

πŸ” Physical-Software Interdependency Map

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Physical Cooling Systems                    β”‚
β”‚    (Liquid cooling, Immersion, CRAC, Heat exchangers)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               ↓                        ↑
        Temp↓ Power↓ Stability↑    AI-based Control
               ↓                   RL/LLM Controllers
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              AI Workloads (LLM/VLM)                      β”‚
β”‚    Performance↑ Throughput↑ Throttling↓ Training Stability↑│
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ’‘ Key Insights: Bidirectional Optimization Synergy

1. Bottom-Up Influence (Physical β†’ Software)

  • Better cooling β†’ maintains higher clock speeds/throughput
  • Temperature stability β†’ predictable performance, no training interruptions
  • Power efficiency β†’ enables simultaneous operation of more GPUs

2. Top-Down Influence (Software β†’ Physical)

  • AI algorithms provide real-time optimal control of cooling equipment
  • LLM’s interpretable decision-making ensures operational transparency
  • Adaptive cooling strategies based on workload characteristics

3. Virtuous Cycle Effect

Better cooling β†’ AI performance improvement β†’ smarter cooling control
β†’ Energy savings β†’ more AI jobs β†’ advanced cooling optimization
β†’ Sustainable large-scale AI infrastructure

🎯 Practical Implications

These studies demonstrate:

  1. Cooling is no longer passive infrastructure: It’s an active determinant of AI performance
  2. AI optimizes its own environment: Meta-level self-optimizing systems
  3. Hardware-software co-design is essential: Isolated optimization is suboptimal
  4. Simultaneous achievement of sustainability and performance: Synergy, not trade-off

πŸ“ Summary

These four studies establish that next-generation AI data centers must evolve into integrated ecosystems where physical cooling and software workloads interact in real-time to self-optimize. The bidirectional relationshipβ€”where better cooling enables superior AI performance, and AI algorithms intelligently control cooling systemsβ€”creates a virtuous cycle that simultaneously achieves enhanced performance, energy efficiency, and sustainable scalability for large-scale AI infrastructure.

#EnergyEfficiency#GreenAI#SustainableAI#DataCenterOptimization#ReinforcementLearning#AIControl#SmartCooling

With Claude

New Era of Digitals

This image presents a diagram titled “New Era of Digitals” that illustrates the evolution of computing paradigms.

Overall Structure:

The diagram shows a progression from left to right, transitioning from being “limited by Humans” to achieving “Everything by Digitals.”

Key Stages:

  1. Human Desire: The process begins with humans’ fundamental need to “wanna know it clearly,” representing our desire for understanding and knowledge.
  2. Rule-Based Era (1000s):
    • Deterministic approach
    • Using Logics and Rules
    • Automation with Specific Rules
    • Record with a human recognizable format
  3. Data-Driven Era:
    • Probabilistic approach (Not 100% But OK)
    • Massive Computing (Energy Resource)
    • Neural network-like structures represented by interconnected nodes

Core Message:

The diagram illustrates how computing has evolved from early systems that relied on human-defined explicit rules and logic to modern data-driven, probabilistic approaches. This represents the shift toward AI and machine learning, where we achieve “Not 100% But OK” results through massive computational resources rather than perfect deterministic rules.

The transition shows how we’ve moved from systems that required everything to be “human recognizable” to systems that can process and understand patterns beyond direct human comprehension, marking the current digital revolution where algorithms and data-driven approaches can handle complexity that exceeds traditional rule-based systems.

With Claude

‘tightly fused’

This illustration visualizes the evolution of data centers, contrasting the traditionally separated components with the modern AI data center where software, compute, network, and crucially, power and cooling systems are ‘tightly fused’ together. It emphasizes how power and advanced cooling are organically intertwined with GPU and memory, directly impacting AI performance and highlighting their inseparable role in meeting the demands of high-performance AI. This tight integration symbolizes a pivotal shift for the modern AI era.

LLM Efficiency with a Cooling

This image demonstrates the critical impact of cooling stability on both LLM performance and energy efficiency in GPU servers through benchmark results.

Cascading Effects of Unstable Cooling

Problems with Unstable Air Cooling:

  • GPU Temperature: 54-72Β°C (high and unstable)
  • Thermal throttling occurs – where GPUs automatically reduce clock speeds to prevent overheating, leading to significant performance degradation
  • Result: Double penalty of reduced performance + increased power consumption

Energy Efficiency Impact:

  • Power Consumption: 8.16kW (high)
  • Performance: 46 TFLOPS (degraded)
  • Energy Efficiency: 5.6 TFLOPS/kW (poor performance-to-power ratio)

Benefits of Stable Liquid Cooling

Temperature Stability Achievement:

  • GPU Temperature: 41-50Β°C (low and stable)
  • No thermal throttling β†’ sustained optimal performance

Energy Efficiency Improvement:

  • Power Consumption: 6.99kW (14% reduction)
  • Performance: 54 TFLOPS (17% improvement)
  • Energy Efficiency: 7.7 TFLOPS/kW (38% improvement)

Core Mechanisms: How Cooling Affects Energy Efficiency

  1. Thermal Throttling Prevention: Stable cooling allows GPUs to maintain peak performance continuously
  2. Power Efficiency Optimization: Eliminates inefficient power consumption caused by overheating
  3. Performance Consistency: Unstable cooling can cause GPUs to use 50% of power budget while delivering only 25% performance

Advanced cooling systems can achieve energy savings ranging from 17% to 23% compared to traditional methods. This benchmark paradoxically shows that proper cooling investment dramatically improves overall energy efficiency.

Final Summary

Unstable cooling triggers thermal throttling that simultaneously degrades LLM performance while increasing power consumption, creating a dual efficiency loss. Stable liquid cooling achieves 17% performance gains and 14% power savings simultaneously, improving energy efficiency by 38%. In AI infrastructure, adequate cooling investment is essential for optimizing both performance and energy efficiency.

With Claude