PIM processing-in-memory

This image illustrates the evolution of computing architectures, comparing three major computing paradigms:

1. General Computing (Von Neumann Architecture)

  • Traditional CPU-memory structure
  • CPU and memory are separated, processing complex instructions
  • Data and instructions move between memory and CPU

2. GPU Computing

  • Collaborative structure between CPU and GPU
  • GPU performs simple mathematical operations with massive parallelism
  • Provides high throughput
  • Uses new types of memory specialized for AI computing

3. PIM (Processing-in-Memory)

The core focus of the image, PIM features the following characteristics:

Core Concept:

  • “Simple Computing” approach that performs operations directly within new types of memory
  • Integrated structure of memory and processor

Key Advantages:

  • Data Movement Minimization: Reduces in-memory copy/reordering operations
  • Parallel Data Processing: Parallel processing of matrix/vector operations
  • Repetitive Simple Operations: Optimized for add/multiply/compare operations
  • “Simple Computing”: Efficient operations without complex control logic

PIM is gaining attention as a next-generation computing paradigm that can significantly improve energy efficiency and performance compared to existing architectures, particularly for tasks involving massive repetitive simple operations such as AI/machine learning and big data analytics.

With Claude

Components for AI Work

This diagram visualizes the core concept that all components must be organically connected and work together to successfully operate AI workloads.

Importance of Organic Interconnections

Continuity of Data Flow

  • The data pipeline from Big Data → AI Model → AI Workload must operate seamlessly
  • Bottlenecks at any stage directly impact overall system performance

Cooperative Computing Resource Operations

  • GPU/CPU computational power must be balanced with HBM memory bandwidth
  • SSD I/O performance must harmonize with memory-processor data transfer speeds
  • Performance degradation in one component limits the efficiency of the entire system

Integrated Software Control Management

  • Load balancing, integration, and synchronization coordinate optimal hardware resource utilization
  • Real-time optimization of workload distribution and resource allocation

Infrastructure-based Stability Assurance

  • Stable power supply ensures continuous operation of all computing resources
  • Cooling systems prevent performance degradation through thermal management of high-performance hardware
  • Facility control maintains consistency of the overall operating environment

Key Insight

In AI systems, the weakest link determines overall performance. For example, no matter how powerful the GPU, if memory bandwidth is insufficient or cooling is inadequate, the entire system cannot achieve its full potential. Therefore, balanced design and integrated management of all components is crucial for AI workload success.

The diagram emphasizes that AI infrastructure is not just about having powerful individual components, but about creating a holistically optimized ecosystem where every element supports and enhances the others.

With Claude