Learning , Reasoning, Inference

This image illustrates the three core processes of AI LLMs by drawing parallels to human learning and cognitive processes.

Learning

  • Depicted as a wise elderly scholar reading books in a library
  • Represents the lifelong process of absorbing knowledge and experiences accumulated by humanity over generations
  • The bottom icons show data accumulation and knowledge storage processes
  • Meaning: Just as AI learns human language and knowledge through vast text data, humans also build knowledge throughout their lives through continuous learning and experience

Reasoning

  • Shows a character deep in thought, surrounded by mathematical formulas
  • Represents the complex mental process of confronting a problem and searching for solutions through internal contemplation
  • The bottom icons symbolize problem analysis and processing stages
  • Meaning: The human cognitive process of using learned knowledge to engage in logical thinking and analysis to solve problems

Inference

  • Features a character confidently exclaiming “THE ANSWER IS CLEAR!”
  • Expresses the confidence and decisiveness when finally finding an answer after complex thought processes
  • The bottom checkmark signifies reaching a final conclusion
  • Meaning: The human act of ultimately speaking an answer or making a behavioral decision through thought and analysis

These three stages visually demonstrate how AI processes information in a manner similar to the natural human sequence of learning → thinking → conclusion, connecting AI’s technical processes to familiar human cognitive patterns.

With Claude

Personal with AI

This diagram illustrates a “Personal Agent” system architecture that shows how everyday life is digitized to create an AI-based personal assistant:

Left side: The user’s daily activities (coffee, computer, exercise, sleep) are represented, which serve as the source for digitization.

Center-left: Various sensors (visual, auditory, tactile, olfactory, gustatory) capture the user’s daily activities and convert them through the “Digitization” process.

Center: The “Current State (Prompting)” component stores the digitized current state data, which is provided as prompting information to the AI agent.

Upper right (pink area): Two key processes take place:

  1. “Learning”: Processing user data from an ML/LLM perspective
  2. “Logging”: Continuously collecting data to update the vector database

This section runs on a “Personal Server or Cloud,” preferably using a personalized GPU server like NVIDIA DGX Spark, or alternatively in a cloud environment.

Lower right: In the “On-Device Works” area, the “Inference” process occurs. Based on current state data, the AI agent infers guidance needed for the user, and this process is handled directly on the user’s personal device.

Center bottom: The cute robot icon represents the AI agent, which provides personalized guidance to the user through the “Agent Guide” component.

Overall, this system has a cyclical structure that digitizes the user’s daily life, learns from that data to continuously update a personalized vector database, and uses the current state as a basis for the AI agent to provide customized guidance through an inference process that runs on-device.

with Claude

AI DC Changes

The evolution of AI data centers has progressed through the following stages:

  1. Legacy – The initial form of data centers, providing basic computing infrastructure.
  2. Hyperscale – Evolved into a centralized (Centric) structure with these characteristics:
    • Led by Big Tech companies (Google, Amazon, Microsoft, etc.)
    • Focused on AI model training (Learning) with massive computing power
    • Concentration of data and processing capabilities in central locations
  3. Distributed – The current evolutionary direction with these features:
    • Expansion of Edge/On-device computing
    • Shift from AI training to inference-focused operations
    • Moving from Big Tech centralization to enterprise and national data sovereignty
    • Enabling personalization for customized user services

This evolution represents a democratization of AI technology, emphasizing data sovereignty, privacy protection, and the delivery of optimized services tailored to individual users.

AI data centers have evolved from legacy systems to hyperscale centralized structures dominated by Big Tech companies focused on AI training. The current shift toward distributed architecture emphasizes edge/on-device computing, inference capabilities, data sovereignty for enterprises and nations, and enhanced personalization for end users.

with Claude

GPU vs NPU on Deep learning

This diagram illustrates the differences between GPU and NPU from a deep learning perspective:

GPU (Graphic Process Unit):

  • Originally developed for 3D game rendering
  • In deep learning, it’s utilized for parallel processing of vast amounts of data through complex calculations during the training process
  • Characterized by “More Computing = Bigger Memory = More Power,” requiring high computing power
  • Processes big data and vectorizes information using the “Everything to Vector” approach
  • Stores learning results in Vector Databases for future use

NPU (Neuron Process Unit):

  • Retrieves information from already trained Vector DBs or foundation models to generate answers to questions
  • This process is called “Inference”
  • While the training phase processes all data in parallel, the inference phase only searches/infers content related to specific questions to formulate answers
  • Performs parallel processing similar to how neurons function

In conclusion, GPUs are responsible for processing enormous amounts of data and storing learning results in vector form, while NPUs specialize in the inference process of generating actual answers to questions based on this stored information. This relationship can be summarized as “training creates and stores vast amounts of data, while inference utilizes this at the point of need.”

With Claude

Chain of thoughts

From Claude with some prompting
This diagram titled “Chain of thoughts” illustrates an inferencing method implemented in AI language models like ChatGPT, inspired by human deductive reasoning processes and leveraging prompting techniques.

Key components:

  1. Upper section:
    • Shows a process from ‘Q’ (question) to ‘A’ (answer).
    • Contains an “Experienced Knowledges” area with interconnected nodes A through H, representing the AI’s knowledge base.
  2. Lower section:
    • Compares “1x Prompting” with “Prompting Chains”.
    • “1x Prompting” depicts a simple input-output process.
    • “Prompting Chains” shows a multi-step reasoning process.
  3. Overall process:
    • Labeled “Inferencing by <Chain of thoughts>”, emphasizing the use of sequential thinking for complex reasoning.

This diagram visualizes how AI systems, particularly models like ChatGPT, go beyond simple input-output relationships. It mimics human deductive reasoning by using a multi-step thought process (Chain of thoughts) to answer complex questions. The AI utilizes its existing knowledge base and creates new connections to perform deeper reasoning.

This approach suggests that AI can process information and generate new insights in a manner similar to human cognition, rather than merely reproducing learned information. It demonstrates the AI’s capability to engage in more sophisticated problem-solving and analysis through a structured chain of thoughts.

Foundation Model

From Claude with some prompting
This image depicts a high-level overview of a foundation model architecture. It consists of various components including a knowledge base, weight database (parameters), vector database (relative data), tuning module for making answers, inference module for generating answers, prompt tools, and an evaluation component for benchmarking.

The knowledge base stores structured information, while the weight and vector databases hold learnable parameters and relative data representations, respectively. The tuning and inference modules utilize these components to generate responses or make predictions. Prompt tools assist in forming inputs, and the evaluation component assesses the model’s performance.

This architectural diagram illustrates the core building blocks and data flow of a foundation model system, likely used for language modeling, knowledge representation, or other AI applications that require integrating diverse data sources and capabilities.

My own AI agent

From DALL-E with some prompting
This image appears to be a conceptual diagram of an individual’s AI agent, divided into several parts:

  1. Personal Area: There’s a user icon with arrows labeled ‘Control’ and ‘Sensing All’. This suggests the user can direct the AI agent and the AI is capable of gathering comprehensive information from its environment.
  2. Micro & Macro Infinite World: This part features illustrations that seem to represent microorganisms, plants, butterflies, etc., indicating that the AI collects data from both microscopic and macroscopic environments.
  3. Personalized Resource: The icon resembling a human brain could represent personalized services or data tailored to the user.
  4. Cloud Infra: The cloud infrastructure is presumably responsible for data processing and storage.
  5. Cloud Service: Depicted as a server providing various services, connected to the cloud infrastructure.
  6. Internet Connected: A globe icon with various network points suggests that the AI agent is connected to global information and knowledge via the internet.

Overall, the diagram illustrates a personalized AI agent that collects information under the user’s control, processes it through cloud infrastructure and services, and ultimately contributes to collective intelligence through an internet connection.