Next AI Computing


The Evolution of AI Computing

The provided images illustrate the architectural shift in AI computing from the traditional “Separation” model to a “Unified” brain-inspired model, focusing on overcoming energy inefficiency and data bottlenecks.

1. CURRENT: The Von Neumann Wall (Separation)

  • Status: The industry standard today.
  • Structure: Computation (CPU/GPU) and Memory (DRAM) are physically separate.
  • Problem: Constant data movement between components creates a “Von Neumann Wall” (bottleneck).
  • Efficiency: Extremely wasteful; 60-80% of energy is consumed just moving data, not processing it.

2. BRIDGE: Processing-In-Memory (PIM) (Proximity)

  • Status: Practical, near-term solution; nearly commercial-ready.
  • Structure: Small processing units are embedded inside the memory.
  • Benefit: Processes data locally to provide a 2-10x efficiency boost.
  • Primary Use: Ideal for accelerating Large Language Models (LLMs).

3. FUTURE: Neuromorphic Computing (Unity)

  • Status: Future-oriented paradigm shift.
  • Structure: Compute IS memory, mimicking the human brain’s architecture where memory elements perform calculations.
  • Benefit: Eliminates data travel entirely, promising a massive 1,000x+ energy improvement.
  • Requirement: Requires a complete overhaul of current software stacks.
  • Primary Use: Ultra-low power Edge devices and Robotics.

#AIComputing #NextGenAI #VonNeumannWall #PIM #ProcessingInMemory #NeuromorphicComputing #EnergyEfficiency #LLM #EdgeAI #Semiconductor #FutureTech #ComputerArchitecture

With Gemini

PIM processing-in-memory

This image illustrates the evolution of computing architectures, comparing three major computing paradigms:

1. General Computing (Von Neumann Architecture)

  • Traditional CPU-memory structure
  • CPU and memory are separated, processing complex instructions
  • Data and instructions move between memory and CPU

2. GPU Computing

  • Collaborative structure between CPU and GPU
  • GPU performs simple mathematical operations with massive parallelism
  • Provides high throughput
  • Uses new types of memory specialized for AI computing

3. PIM (Processing-in-Memory)

The core focus of the image, PIM features the following characteristics:

Core Concept:

  • “Simple Computing” approach that performs operations directly within new types of memory
  • Integrated structure of memory and processor

Key Advantages:

  • Data Movement Minimization: Reduces in-memory copy/reordering operations
  • Parallel Data Processing: Parallel processing of matrix/vector operations
  • Repetitive Simple Operations: Optimized for add/multiply/compare operations
  • “Simple Computing”: Efficient operations without complex control logic

PIM is gaining attention as a next-generation computing paradigm that can significantly improve energy efficiency and performance compared to existing architectures, particularly for tasks involving massive repetitive simple operations such as AI/machine learning and big data analytics.

With Claude