Parallel Processing

Parallel Processing System Analysis

System Architecture

1. Input Stage – Independent Processing

  • Multiple tasks are simultaneously input into the system in parallel
  • Each task can be processed independently of others

2. Central Processing Network

Blue Nodes (Modification Work)

  • Processing units that perform actual data modifications or computations
  • Handle parallel incoming tasks simultaneously

Yellow Nodes (Propagation Work)

  • Responsible for propagating changes to other nodes
  • Handle system-wide state synchronization

3. Synchronization Stage

  • Objective: “Work & Wait To Make Same State”
  • Wait until all nodes reach identical state
  • Essential process for ensuring data consistency

Performance Characteristics

Advantage: Massive Parallel

  • Increased throughput through large-scale parallel processing
  • Reduced overall processing time by executing multiple tasks simultaneously

Disadvantage: Massive Wait Cost

  • Wait time overhead for synchronization
  • Entire system must wait for the slowest node
  • Performance degradation due to synchronization overhead

Key Trade-off

Parallel processing systems must balance performance enhancement with data consistency:

  • More parallelism = Higher performance, but more complex synchronization
  • Strong consistency guarantee = Longer wait times, but stable data state

This concept is directly related to the CAP Theorem (Consistency, Availability, Partition tolerance), which is a fundamental consideration in distributed system design.

With Claude