“Vectors” than definitions.

This image visualizes the core philosophy that “In the AI era, vector-based thinking is needed rather than simplified definitions.”

Paradigm Shift in the Upper Flow:

  • Definitions: Traditional linear and fixed textual definitions
  • Vector: Transformation into multidimensional and flexible vector space
  • Context: Structure where clustering and contextual relationships emerge through vectorization

Modern Approach in the Lower Flow:

  1. Big Data: Complex and diverse forms of data
  2. Machine Learning: Processing through pattern recognition and learning
  3. Classification: Sophisticated vector-based classification
  4. Clustered: Clustering based on semantic similarity
  5. Labeling: Dynamic labeling considering context

Core Insight: In the AI era, we must move beyond simplistic definitional thinking like “an apple is a red fruit” and understand an apple as a multidimensional vector encompassing color, taste, texture, nutritional content, cultural meaning, and more. This vector-based thinking enables richer contextual understanding and flexible reasoning, allowing us to solve complex real-world problems more effectively.

Beyond simple classification or definition, this presents a new cognitive paradigm that emphasizes relationships and context. The image advocates for a fundamental shift from rigid categorical thinking to a nuanced, multidimensional understanding that better reflects how modern AI systems process and interpret information.

With Claude